

The 7th CIRP IPSS Conference 21-22 May 2015 Saint-Etienne, France

Modeling Bike Sharing System using Built Environment Factors by

Tien Dung TRAN, Nicolas OVTRACHT and Bruno FAIVRE D'ARCIER

Presenting Author: Tien Dung TRAN
Laboratoire d'Economie des Transports
LYON, FRANCE

tiendung.tran@let.ish-lyon.cnrs.fr

Outline

- Context and Literature review
- Data and method
- Results
- Conclusion and perspective

Modeling Bike Sharing System using Built Environment Factors

CONTEXT AND LITERATURE REVIEW

Bike sharing system (BSS) development

Definition: service of short term bike renting with a system of stations, bikes and docks

Advantage: no theft, no maintenance, mobility cost, no bike parking, whenever we want

1990s Denmark 2nd generation

2014 E-bike sharing 4th generation

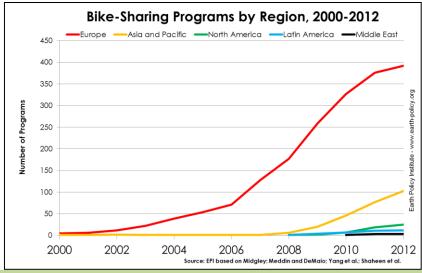
- BiciMad Spain
- Bycyklen Denmark

1960s Netherland 1st generation

2005 Lyon – France 3rd generation

Réalisation : Tien-Dung Tran, LET-ISH, Lyon

Bike sharing system (BSS) development


In the world:

49 countries, more than 500 cities, 700 000 bikes
Stagnation in Europe,
Development in North America

In France:

more than 30 systems, important success in Paris and Lyon

Lyon's BSS – Vélo'v

- Started in May 2005: 173 stations,
 2000 bikes, 20 000 long-term users
- BSS trips represent 33% bikes trips in Lyon in 2009
- In 2014: 345 stations and 4 000 bikes
 - 2011: 6.2 million trips
 - 2012: 7.1 million trips
 - 2013: 7.2 million trips
 - 2014: 8.2 million trips

Earlier researches and our paper

- Few quantitative researches on bike sharing demand
 - Data aggregated: by day, by month, by year → loose information about the factors affecting the BSS trips purpose
 - At district level →loose information about the spatial effect of land use and built environment
 - No distinction of subscribers type: long term subscribers and short term subscribers
- Our paper: Modeling the BSS demand for each type of subscribers during different peak periods of working day using variables of built environment at station level.

Modeling Bike Sharing System using Built Environment Factors

DATA AND METHOD

Data and method

Data

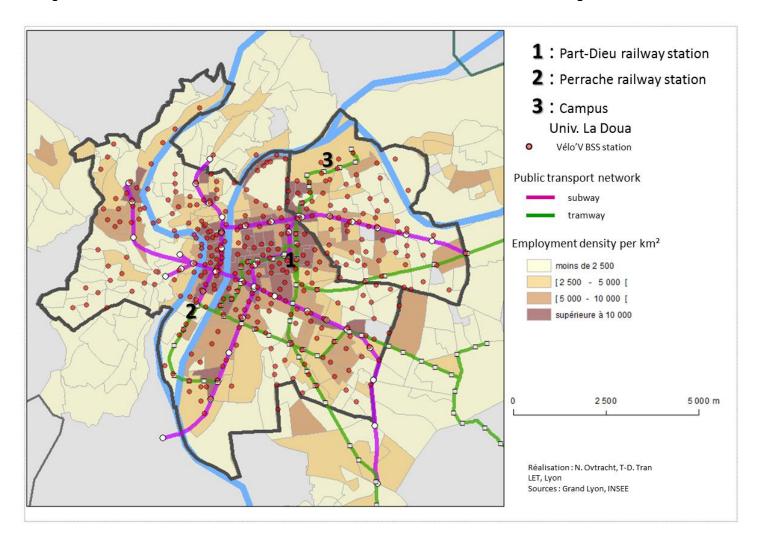
- Bike sharing trips in 2011 (more than 6 million trips)
- Built-environment variables around bike sharing stations
- Data is geocomputed by the platform MOSART

Method

 Method: robust linear regression between BSS flows and socioeconomic variables

$$Yi = BXi + Ei$$

With


Yi: Bike sharing flows of station *i* (341 stations)

Xi: Socio-economic variables around BSS station i

Ei: Errors of estimation

Spatial distribution of Lyon BSS

Data and method

- Dependent variable: bike sharing flows
 - for different peak periods in a working day (AM and PM)
 during 100 days
 - for annual members and daily users
- Explanatory variables (14 variables):
 - calculated in a buffer zone 300m around each BSS station
 - socio-economic, leisure and recreation, public transport and characteristic of BSS variables

Continuous variable	Min	Max	Mean	Std. Dev.	
Population	4	10977	4707.17	2481.25	
Job	148	11828	2332.09	2114.43	
Students in campus	0	25788	799.59	2892.43	
Student residence	0	10	1.326	1.98	
Railway station	0	20	0.26	2.02	
Metro station	0	12	1.51	2.71	
Tramway station	0	27	1.69	4.33	
Altitude (m)	164	289	180.84	28.04	
Bicycle infrastructure (m)	0	2835	1024.95	650.50	
Station capacity	10	40	19.37	5.89	
Network density	45	277	238	57.94	
Cinema	0	4	0.25	0.68	
Restaurant	0	28	3.06	5.34	
Categorical variable			Percentage		
Embankment road	0	1	8%		

Modeling Bike Sharing System using Built Environment Factors

RESULTS

Preliminary results

The models are different for:

- 2 types of BSS users: annual members and daily users
- 2 types of flows: inbound and outbound flows
- 2 peak periods: AM and PM peaks

Results – Morning Peak Models

		Long term users		Short term users	
	Parameters	coefficients	t-stat	coefficients	t-stat
Arrival flow	Intercepts	-1.8641	-0.0105	9.2555	1.2144
	Altitude	-2.8990	-4.1288	-0.1611	-5.3569
	Capacity	22.7220	6.7138	1.0943	7.5471
	Network density	1.7982	4.2554	0.0788	4.3552
	Jobs	0.1316	11.1600	0.0019	3.7614
	Student in campus	0.0312	4.6965	0.0029	10.0350
	Railway station	77.0490	7.8939	3.6001	8.6091
	R ²	0.690		0.635	
Departure flow	Intercepts	-211.1900	-1.3020	-13.9110	-1.6777
	Altitude	-1.6371	-2.5658	-0.0678	-2.0784
	Capacity	10.7790	3.4000	0.8460	5.2202
	Network density	3.2136	7. 8712	0.1406	6.7379
	Population	0.0632	6.5039	0.0027	5.3786
	Railway station	143.4000	16.1730	3.9988	8.8229
	Student residence	29.5140	3.2595	1.4368	3.1041
	R ²	0.692		0.559	

Results – Morning Peak Models

- BSS usage of annual members and daily users is likely similar during morning peak: commuting trips (from home to work)
- Positive impact of public transport, station capacity, number of BSS stations
- Negative impact of relief on bike sharing usage
- BSS usage in the morning peak period: homebased and work-based trips

Results – Evening Peak Models

	Dovernatova	Long term users		Short term users	
	Parameters	coefficients	t-stat	coefficients	t-stat
Arrival flow	Intercepts	367.1500	1.4273	47.1600	1.2325
	Altitude	-7.4067	-7.3199	-0.8322	-5.4668
	Capacity	22.8160	4.5382	4.0471	5.6413
	Network density	6.4859	10.0180	0.6075	7.3440
	Population	0.0629	4.0785	-	-
	Railway station	84.4820	6.0085	9.7802	4.6797
	Student residence	58. <i>2</i> 370	4.0557	9,6920	4.3822
	Cinema	-	-	20.0550	2.7625
	Restaurant	-	-	5.1413	5.1189
	Embankment road	-	-	60.7550	4.0967
	R ²	0.654		0.584	
Departure flow	Intercepts	-82.8110	-0.3227	-13.9110	-1.6777
	Altitude	-4.4700	-4.4138	-0.0678	-2.0784
	Capacity	28.9370	5.9279	0.8460	5.2202
	Network density	5.9692	9.7935	0.1406	6.7379
	Job	0.0921	5.4126	-	=
	Railway station	105.9300	7.5243	3.9988	8.8229
	Student in campus	0.0357	3.7246	-	-
	Student residence	-	-	11.1950	5.3041
	Cinema	-	-	17.1610	5.8732
	Restaurant	-	-	3.6477	3.8055
	Embankment road	-	-	57.3750	4.0538
	R ²	0.663		0.579	

Results – Evening Peak Models

- A clear difference of BSS usage between annual members and daily users
 - Home-based and work-based trips for annual members
 - Leisure and recreational trips for daily users
- Positive impact of public transport, station capacity, number of BSS stations
- Negative impact of relief on bike sharing usage

Modeling Bike Sharing System using Built Environment Factors

CONCLUSION AND PERSPECTIVE

Conclusion and perspective

- The models are useful for improving the BSS quality by:
 - determining time of day based bicycle demand profiles
 - regulating bicycle and slot availability and rebalancing operations at station level: where, when and how many bike need to be regulated.
- The models could provide guidance on:
 - how to choose the position and to size a new station
 - how to regulate the bike sharing and bike sharing slots at station level
- The models for off-peak periods should be developed

Acknowledgements

- The research is in the project ANR Vél'innov (managed by LET) about the bike sharing system of Lyon.
- Thanks to JC Decaux for the bike sharing data.

Thank you for your attention

tiendung.tran@let.ish-lyon.cnrs.fr

